de-CH
utf-8
math math-format
Gebietsintegral über ein anderes Dreieck
int2-01-03
multiple
10192
randRangeExclude(-8,8,[0,1,-1]) randRangeExclude(-8,8,[0,1,A,-1]) randRange(1,8) randRangeExclude(1,8,[X])

Gegeben sei die Funktion f: \mathbb R^2 \to \mathbb R mit f(x,y) = A x + B y.

Berechnen Sie das Integral \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA über dem Gebiet \color{orange}D.



graphInit({ range: [[-2, 9],[-9, 9]], scale: [20,20], tickStep: [1,1], gridStep: [1,1], labelStep: [2,2], gridOpacity: 0.1, axisOpacity: 0.8, tickOpacity: 0.6, labelOpacity: 0.8 }); label( [ 0, 9.5 ], "y", "above" ); label( [9.5,0 ], "x", "right" ); line( [0, -Y], [0, Y], { stroke: ORANGE } ); line( [0,-Y], [X, 0], { stroke: ORANGE } ); line( [X,0], [0, Y], { stroke: ORANGE } )


a \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA = (X*X*X*(A*X*Y+B*B*X*X)*2 - 3*Y*Y*(A*Y+2*B*X)*(-X)- 6*Y*Y*B*Y*Y*(-X) + X*X*X*(-A*X*Y+B*B*X*X)*2 + 3*Y*Y*(A*Y-2*B*X)*X+ 6*Y*Y*B*Y*Y*X)/(6*Y*Y)

Beschreiben zunächst {\orange{D}} \subset \mathbb R^2 mit (z.B.) {\orange{D}} = \left\{ (x,y) \, | \, -Y \leq y \leq Y, \; 0 \leq x \leq -fractionReduce(X,Y) |y| + X\right\}.

Es ist damit dann \displaystyle \int\int_{\orange{D}} f(x,y) dA = \int_{-Y}^{Y} \int_0^{f_O(y)} (Ax + By) \, dx dy mit f_O(y) = -fractionReduce(X,Y) |y| + X. (Cave: Reihenfolge)

Für die innere Integration (zuerst nach x) zerlegen wir das Integral in y \geq 0 und y < 0:

\displaystyle \int_{-Y}^{Y} \int_0^{f_O(y)} (Ax + By) \, dx dy = \int_{-Y}^{0} \int_0^{fractionReduce(X,Y,small=true) y + X} (Ax + By) \, dx dy + \int_0^{Y} \int_0^{-fractionReduce(X,Y,small=true) y + X} (Ax + By) \, dx dy

und verwenden \displaystyle \int (Ax + By) \, dx = fractionReduce(A,2)x^2 + Byx +C.

Damit erhalten wir für die äussere Integration:

\displaystyle \int_{-Y}^{0} fractionReduce(B*X*Y+A*A*Y*Y,X*X) y^2 + B*X+2*A*Y y + A*X*X \, dy + \int_0^{Y} fractionReduce(-B*X*Y+A*A*Y*Y,X*X) y^2 + B*X-2*A*Y y + A*Y*Y \, dy = fractionReduce(Y*Y*Y*(B*X*Y+A*A*Y*Y)*2 - 3*X*X*(B*X+2*A*Y)*(-Y)- 6*X*X*A*X*X*(-Y) ,6*X*X) + fractionReduce(Y*Y*Y*(-B*X*Y+A*A*Y*Y)*2 + 3*X*X*(B*X-2*A*Y)*Y+ 6*X*X*A*X*X*Y ,6*X*X) = fractionReduce(Y*Y*Y*(B*X*Y+A*A*Y*Y)*2 - 3*X*X*(B*X+2*A*Y)*(-Y)- 6*X*X*A*X*X*(-Y) + Y*Y*Y*(-B*X*Y+A*A*Y*Y)*2 + 3*X*X*(B*X-2*A*Y)*Y+ 6*X*X*A*X*X*Y,6*X*X).