



# Grundlagen

Vollständige Induktion

Meike Akveld





 ${\cal A}$  : Die Winkelsumme in einem ebenen Dreieck ist  $180^{\circ}$ .

 $\mathcal{B}:1001$  ist eine Primzahl.



 ${\cal A}$ : Die Winkelsumme in einem ebenen Dreieck ist  $180^{\circ}$ .  $\checkmark$ 



 ${\cal A}$  : Die Winkelsumme in einem ebenen Dreieck ist  $180^{\circ}.$   $\checkmark$ 

 $\mathcal{B}: 1001$  ist eine Primzahl. FALSCH





$$\mathcal{A}(n): \sum_{k=1}^{n} (2k-1) = 1+3+5+\dots+(2n-1) = n^2$$
  
 $\mathcal{B}(n): 4 \mid 5^n + 7$ 

$$\mathcal{A}(n): \quad \sum_{k=1}^{n} (2k-1) = 1 + 3 + 5 + \dots + (2n-1) = n^{2}$$

$$\mathcal{B}(n): \quad 4 \mid 5^{n} + 7$$

 $\mathcal{B}(1):4|5^1+7\iff \mathcal{B}(1):12\,\mathsf{ist}\;\mathsf{durch}\;\mathsf{4}\;\mathsf{teilbar}.$ 

$$\mathcal{A}(n): \quad \sum_{k=1}^{n} (2k-1) = 1 + 3 + 5 + \dots + (2n-1) = n^{2}$$

$$\mathcal{B}(n): \quad 4 \mid 5^{n} + 7$$

$$\mathcal{B}(1):4|5^1+7\iff \mathcal{B}(1):12$$
 ist durch 4 teilbar.  $\checkmark$ 

$$\mathcal{A}(n): \quad \sum_{k=1}^{n} (2k-1) = 1 + 3 + 5 + \dots + (2n-1) = n^{2}$$

$$\mathcal{B}(n): \quad 4 \mid 5^{n} + 7$$

$$\mathcal{B}(1):4|5^1+7\iff \mathcal{B}(1):12$$
 ist durch 4 teilbar.  $\checkmark$   $\mathcal{B}(2):4|5^2+7\iff \mathcal{B}(1):25+7=32$  ist durch 4 teilbar.

$$\mathcal{A}(n): \quad \sum_{k=1}^{n} (2k-1) = 1 + 3 + 5 + \dots + (2n-1) = n^{2}$$

$$\mathcal{B}(n): \quad 4 \mid 5^{n} + 7$$

$$\mathcal{B}(1):4|5^1+7\iff \mathcal{B}(1):12\,\mathrm{ist}\,\,\mathrm{durch}\,\,4\,\,\mathrm{teilbar}.$$

$$\mathcal{B}(2):4|5^2+7\iff \mathcal{B}(1):25+7=32\,\mathrm{ist}$$
 durch 4 teilbar.  $\checkmark$ 





Gegeben: Eine Aussage  $\mathcal{A}(n)$  für  $n \in \mathbb{N}$ 



Gegeben: Eine Aussage  $\mathcal{A}(n)$  für  $n \in \mathbb{N}$ 

Ziel: Zeigen, dass  $\mathcal{A}(n)$  wahr ist für alle  $n \in \mathbb{N}$ .

Gegeben: Eine Aussage  $\mathcal{A}(n)$  für  $n \in \mathbb{N}$ 

Ziel: Zeigen, dass A(n) wahr ist für alle  $n \in \mathbb{N}$ .

Schritt I (Verankerung): Zeige, dass  $A(n_0)$  wahr ist für irgendein  $n_0 \in \mathbb{N}$ .

Gegeben: Eine Aussage  $\mathcal{A}(n)$  für  $n \in \mathbb{N}$ 

Ziel: Zeigen, dass A(n) wahr ist für alle  $n \in \mathbb{N}$ .

Schritt I (Verankerung): Zeige, dass  $A(n_0)$  wahr ist für irgendein  $n_0 \in \mathbb{N}$ .

Schritt II (Induktionsschritt): Zeige, dass  $\mathcal{A}(n) \implies \mathcal{A}(n+1)$  für ein beliebiges  $n > n_0$ .



Gegeben: Eine Aussage  $\mathcal{A}(n)$  für  $n \in \mathbb{N}$ 

Ziel: Zeigen, dass A(n) wahr ist für alle  $n \in \mathbb{N}$ .

Schritt I (Verankerung): Zeige, dass  $A(n_0)$  wahr ist für irgendein  $n_0 \in \mathbb{N}$ .

Schritt II (Induktionsschritt): Zeige, dass  $\mathcal{A}(n) \implies \mathcal{A}(n+1)$  für ein beliebiges  $n \ge n_0$ .

**QED** 



**Behauptung:**  $\mathcal{B}(n):4|5^n+7$  ist wahr für alle  $n\in\mathbb{N}$  (d.h.  $5^n+7$  ist immer durch 4 teilbar).

**Behauptung:**  $\mathcal{B}(n):4|5^n+7$  ist wahr für alle  $n\in\mathbb{N}$  (d.h.  $5^n+7$  ist immer durch 4 teilbar).

**Verankerung:**  $\mathcal{B}(1):4|5^1+7$  (12 ist durch 4 teilbar.)  $\checkmark$ 

**Behauptung:**  $\mathcal{B}(n):4|5^n+7$  ist wahr für alle  $n\in\mathbb{N}$  (d.h.  $5^n+7$  ist immer durch 4 teilbar).

**Verankerung:**  $\mathcal{B}(1):4|5^1+7$  (12 ist durch 4 teilbar.)  $\checkmark$ 

Induktionsschritt: Angenommen,  $5^n + 7$  ist durch 4 teilbar für irgendein  $n \in \mathbb{N}$ .

Induktionsvoraussetung(IV)

**Behauptung:**  $\mathcal{B}(n):4|5^n+7$  ist wahr für alle  $n\in\mathbb{N}$  (d.h.  $5^n+7$  ist immer durch 4 teilbar).

**Verankerung:**  $\mathcal{B}(1):4|5^1+7$  (12 ist durch 4 teilbar.)  $\checkmark$ 

Induktionsschritt: Angenommen,  $5^n + 7$  ist durch 4 teilbar für irgendein  $n \in \mathbb{N}$ . Dann Induktionsvoraussetung(IV)

gilt

$$5^{n+1} + 7 = 5 \cdot 5^n + 7 = 5 \cdot \underbrace{(5^n + 7)}_{\text{(IV)}} -35 + 7$$

**Behauptung:**  $\mathcal{B}(n):4|5^n+7$  ist wahr für alle  $n\in\mathbb{N}$  (d.h.  $5^n+7$  ist immer durch 4 teilbar).

**Verankerung:**  $\mathcal{B}(1):4|5^1+7$  (12 ist durch 4 teilbar.)  $\checkmark$ 

Induktionsschritt: Angenommen,  $5^n + 7$  ist durch 4 teilbar für irgendein  $n \in \mathbb{N}$ .

Induktionsvoraussetung(IV)

Dann gilt

$$5^{n+1} + 7 = 5 \cdot \underbrace{(5^n + 7)}_{\text{(IV)}} - 35 + 7$$

$$= 5 \cdot \underbrace{(5^n + 7)}_{\text{durch 4 teilbar}} - \underbrace{28}_{\text{durch 4 teilbar}}$$

**Behauptung:**  $\mathcal{B}(n):4|5^n+7$  ist wahr für alle  $n\in\mathbb{N}$  (d.h.  $5^n+7$  ist immer durch 4 teilbar).

**Verankerung:**  $\mathcal{B}(1):4|5^1+7$  (12 ist durch 4 teilbar.)  $\checkmark$ 

Induktionsschritt: Angenommen,  $5^n + 7$  ist durch 4 teilbar für irgendein  $n \in \mathbb{N}$ .

Induktionsvoraussetung(IV)

Dann gilt

$$5^{n+1} + 7 = 5 \cdot \underbrace{(5^n + 7)}_{\text{(IV)}} - 35 + 7$$

$$= 5 \cdot \underbrace{(5^n + 7)}_{\text{durch 4 teilbar}} - \underbrace{28}_{\text{durch 4 teilbar}}$$

Also  $5^{n+1} + 7$  ist durch 4 teilbar.



Behauptung:  $A(n): \sum_{k=1}^{n} (2k-1) = n^2$  für alle  $n \in \mathbb{N}$ .

Behauptung:  $\mathcal{A}(n):\sum_{k=1}^n(2k-1)=n^2$  für alle  $n\in\mathbb{N}.$ 

Verankerung: 
$$\mathcal{A}(1): \sum_{k=1}^{1} (2k-1) = 1^2$$

Behauptung: 
$$\mathcal{A}(n): \sum_{k=0}^{\infty} (2k-1) = n^2$$
 für alle  $n \in \mathbb{N}$ .

**Verankerung:** 
$$A(1): \sum_{k=1}^{1} (2k-1) = 2 \cdot 1 - 1 = 1 = 1^2$$

**Behauptung:**  $\mathcal{A}(n):\sum_{k=1}^n(2k-1)=n^2$  für alle  $n\in\mathbb{N}.$  Induktionsschritt: Nehmen wir an, dass  $\mathcal{A}(n):\sum_{k=1}^n(2k-1)=n^2$  für irgendein  $n\in\mathbb{N}.$ 

$$\underbrace{\sum_{k=1}^{\infty}}_{\text{(IV)}}$$

**Behauptung:**  $\mathcal{A}(n):\sum_{k=1}^n(2k-1)=n^2$  für alle  $n\in\mathbb{N}.$  Induktionsschritt: Nehmen wir an, dass  $\mathcal{A}(n):\sum_{k=1}^n(2k-1)=n^2$  für irgendein  $n\in\mathbb{N}.$ 

$$\underbrace{\frac{\sum_{k=1}^{N}(\mathsf{IV})}{\mathsf{IV}}}$$

Dann gilt

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + (2 \cdot (n+1) - 1) \underbrace{=}_{(IV)} n^2 + 2n + 1 = (n+1)^2$$

**Behauptung:**  $\mathcal{A}(n):\sum_{k=1}^n(2k-1)=n^2$  für alle  $n\in\mathbb{N}.$  Induktionsschritt: Nehmen wir an, dass  $\mathcal{A}(n):\sum_{k=1}^n(2k-1)=n^2$  für irgendein  $n\in\mathbb{N}.$ 

$$\underbrace{\qquad \qquad }_{k=1} \underbrace{\qquad \qquad }_{(\mathsf{IV})}$$

Dann gilt

$$\sum_{k=1}^{n+1} (2k-1) = \sum_{k=1}^{n} (2k-1) + (2 \cdot (n+1) - 1) \underbrace{=}_{\text{(IV)}} n^2 + 2n + 1 = (n+1)^2$$

Und damit haben wir gezeigt, dass auch A(n+1) gilt, und somit ist die Behauptung **QED** bewiesen.