de-CH
utf-8
math graphie polynomials
Skalarprodukt einstellen
t-04-06a
number
194481
randRangeNonZero(-10,10) randRange(-10,10) randRangeNonZero(-10,10) randRange(-10,10)

Bestimmen Sie \color{red}a, sodass das Skalarprodukt der beiden Vektoren \vec{v}=\left( \begin{matrix} WY \\ VY \end{matrix} \right) und \vec{w}=\left( \begin{matrix} WX \\ \color{red}a\end{matrix} \right) gleich \color{blue}{SKP} ist.

(SKP-WX*WY)/VY

Für das Skalarprodukt gilt:

\vec {v} \cdot \vec{w} = \left( \begin{matrix} v_X\\ v_Y \end{matrix} \right) \cdot \left(\begin{matrix} w_X \\ \color{red}a \end{matrix} \right) = v_X \cdot w_X + v_Y \cdot \color{red}a.

Mit den gegebenen Werten folgt

\color{blue}{SKP} = \vec{v} \cdot \vec{w} = negParens(WY) \cdot negParens(WX) + negParens(VY) \cdot \color{red}a .

Lösen wir diese Gleichung nach \color{red}a auf, folgt

\color{red}a = \dfrac{\color{blue}{SKP} + -WX*WY}{VY} = fractionReduce(SKP-WX*WY,VY) .