de-CH
utf-8
math math-format graphie
Demo custom mit Geradengleichung
custom
12100
randRange(1, 8) randRange(1, 8) randRangeExclude(1, 5, [X1]) randRangeExclude(1, 5, [Y1]) (Y1 - Y2) / (X1 - X2) fractionReduce(Y1 - Y2, X1 - X2) SLOPE * X1 - Y1

Die beiden Punkte ({\color{blue}X1}, {\color{blue}Y1}) und ({\color{red}X2}, {\color{red}Y2}) liegen auf einer Geraden y = f(x). Dann gilt:

y - {}{} = {}\Big(x - {}\, \Big)

[$("input#response1").val(), $("input#response2").val(), $("input#response3").val()]
var xyMessage = null, xyEmpty = false; var slopeValidator = Khan.answerTypes.predicate.createValidatorFunctional(function(slope, error) { if (Math.abs(slope - SLOPE) > Math.pow(2, -42)) { return false; } var yMessage = null, yEmpty = false; var xValidator = Khan.answerTypes.predicate.createValidatorFunctional(function(x, error) { var yValidator = Khan.answerTypes.predicate.createValidatorFunctional(function(y, error) { return Math.abs((x * slope - y) - INTERCEPT) < Math.pow(2, -42); }, {forms: 'integer, proper, improper, mixed, decimal'}); var yResult = yValidator(guess[0]); if (yResult.empty) { yEmpty = true; } if (yResult.message !== null) { yMessage = yResult.message; } if (yResult.correct) { yEmpty = false; yMessage = null; } return yResult.correct; }, {forms: 'integer, proper, improper, mixed, decimal'}); var xResult = xValidator(guess[2]); if (xResult.empty || yEmpty) { xyEmpty = true; } if (xResult.message !== null || yMessage !== null) { xyMessage = xResult.message || yMessage; } if (xResult.correct) { xyEmpty = false; xyMessage = null; } return xResult.correct; }, {forms: 'integer, proper, improper, mixed, decimal, coefficient', fallback: 1}); var slopeResult = slopeValidator(guess[1]); if (slopeResult.empty || xyEmpty) { return ""; } else if (slopeResult.message !== null) { return slopeResult.message; } else if (xyMessage !== null) { return xyMessage; } return slopeResult.correct;

Die Steigung der Geraden ist m = \dfrac{(y_{1} - y_{2})}{(x_{1} - x_{2})}.

Eingesetzt ist dies \dfrac{{\color{blue}Y1} - negParens(Y2, "red")} {{\color{blue}X1} - negParens(X2, "red")} = {\color{teal}\dfrac{Y1 - Y2}{X1 - X2}} = {\color{teal}SLOPE_FRACTION}

Setze nun die Koordinaten x_{1}, y_{1} eines Punktes ein.

Entweder (y - {\color{blue}Y1}) = {\color{teal}SLOPE_FRACTION}(x - {\color{blue}X1}),
oder (y - {\color{red}Y2}) = {\color{teal}SLOPE_FRACTION}(x - {\color{red}X2}).