en
utf-8
math math-format
Critical points
diff2-01-01
set
13104
randRangeExclude(-3,3,[0]) randRangeExclude(-3,3,[0,L1,-L1]) randRangeExclude(-4,4,[0,1]) randRangeExclude(-4,4,[0,1]) 3*A*L1*L2 fractionReduce(B*B, 6*A*(L1+L2)) fractionReduce(-L1*3*A*(L1+L2),B) fractionReduce(-L2*3*A*(L1+L2),B)

Consider the function f: \mathbb R^2 \to \mathbb R with f(x,y) = A x^3 + Bx y+ Cx + D y^2.

This has two critical points P = (\blue{x_P} ,\blue{y_P}) and Q = (\red{x_Q} ,\red{y_Q}). Find the coordinates.

L1
-L1*3*A*(L1+L2)/B
L2
-L2*3*A*(L1+L2)/B
\blue{x_P} =
\blue{y_P} =
\red{x_Q} =
\red{y_Q}=

A critical point (x_0,y_0) satisfies f_x (x_0,y_0) = 0 = f_y (x_0,y_0).

We compute also I: \ f_x(x,y)= 3*A x^2 + B y + C and II:\ f_y(x,y)= B x+ fractionReduce(2* B*B, 6*A*(L1+L2)) y. Therfore we are seeking for pairs x,y such that I and II are zero.

Using II we get the condition y = fractionReduce( -3*A*(L1+L2),B ) x. Now we substitute this in I.

This transforms I into a quadratic equation:

3*A x^2 + -3*A*(L1+L2) y + C = 0, die sich vereinfacht zu x^2 + -(L1+L2) y + L1*L2 = 0.

By factorisation x^2 + -(L1+L2) y + L1*L2 = (x - L1) (x - L2) we read the x - coordinates x_P = L1 and x_Q = L2.

Putting these into the equation II above y = fractionReduce( -3*A*(L1+L2),B ) x yields the y - coordinates y_P = Y1 and y_Q = Y2.