\blue{x_P} =
\blue{y_P} =
Consider the function f: \mathbb R^2 \to \mathbb R
with
f(x,y) = A x^3 + Bx y+ Cx + D y^2
.
This has two critical points
P = (\blue{x_P} ,\blue{y_P})
and
Q = (\red{x_Q} ,\red{y_Q})
. Find the coordinates.
\blue{x_P} =
\blue{y_P} =
\red{x_Q} =
\red{y_Q}=
A critical point (x_0,y_0)
satisfies f_x (x_0,y_0) = 0 = f_y (x_0,y_0)
.
We compute also I: \ f_x(x,y)= 3*A x^2 + B y + C
and
II:\ f_y(x,y)= B x+ fractionReduce(2* B*B, 6*A*(L1+L2)) y
.
Therfore we are seeking for pairs x,y
such that I
and II
are zero.
Using II
we get the condition y = fractionReduce( -3*A*(L1+L2),B ) x
.
Now we substitute this in I
.
This transforms I
into a quadratic equation:
3*A x^2 + -3*A*(L1+L2) y + C = 0
, die sich vereinfacht
zu
x^2 + -(L1+L2) y + L1*L2 = 0
.
By factorisation
x^2 + -(L1+L2) y + L1*L2 = (x - L1) (x - L2)
we read the x
- coordinates x_P = L1
and
x_Q = L2
.
Putting these into the equation II
above
y = fractionReduce( -3*A*(L1+L2),B ) x
yields the y
- coordinates
y_P = Y1
and
y_Q = Y2
.