Consider a function f: \mathbb R^2 \to \mathbb R
with
f(x,y) = A x^3 + Bx y+ Cx + D y^2
and
a point P = (x_0,y_0)= (X,Y)
.
Find {\color{blue} a}, {\color{teal} b}
und {\color{red} c}
such that
E: z = {\color{blue} a}x + {\color{teal} b} y + {\color{red} c}
defines the tangent plane of f
in
(X,Y, f( X,Y))
.
{\color{blue} a} =
3*A*X*X + B*Y + C
{\color{teal} b}=
B*X+ Y* D*2
{\color{red} c} =
Z - X*(3*A*X*X + B*Y + C) -Y*( B*X+ Y* D*2)
If the tangent plane in (x_0,y_0)
exists, it is graph of the function \ell
with
\ell (x,y) = f(x_0,y_0) + f_x(x_0,y_0) (x-x_0) + f_y(x_0,y_0) (y-y_0).
Using the given values one gets
z= \ell (x,y) =
f(X,Y) + f_x(X,Y) (x-X) + f_y(X,Y) (y-Y).
We compute the missing numbers f_x(x,y)= 3*A x^2 + B y + C
and
f_y(x,y)= B x+ 2*D y
.
The point P = (x_0,y_0)= (X,Y)
delivers
f_x(X,Y)= 3*A*X*X + B*Y + C
and
f_y(X,Y)= B*X+ 2* Y* D
.
Combining this to
z = Z + 3*A*X*X + B*Y + C (x-X) + B*X+ Y* D*2 (y-Y)
and we must do some sorting and cleaning.
Eventually
z = 3*A*X*X + B*Y + C x + B*X+ Y* D*2 y +Z - X*(3*A*X*X + B*Y + C) -Y*( B*X+ Y* D*2)
and
{\color{blue} a =3*A*X*X + B*Y + C}
, \color{teal} b = B*X+ Y* D*2
and {\color{red}c = Z - X*(3*A*X*X + B*Y + C) -Y*( B*X+ Y* D*2)}
.