Given is a linear system of the form (2−5−4∣−294−31∣−28−231∣20)\begin{pmatrix}2 & -5 & -4 & \bigl | &-29 \\ 4 & -3 & 1 & \bigl | &-28 \\ -2 & 3 & 1 & \bigl | &20 \end{pmatrix} 24−2−5−33−411−29−2820 with the unique solution (XYZ) \begin{pmatrix} {\color{red}X} \\ {\color{blue}Y} \\ Z \end{pmatrix}XYZ.
(2−5−4∣−294−31∣−28−231∣20)\begin{pmatrix}2 & -5 & -4 & \bigl | &-29 \\ 4 & -3 & 1 & \bigl | &-28 \\ -2 & 3 & 1 & \bigl | &20 \end{pmatrix} 24−2−5−33−411−29−2820
(XYZ) \begin{pmatrix} {\color{red}X} \\ {\color{blue}Y} \\ Z \end{pmatrix}XYZ
Determine the entries
X=\color{red} X =X=
Y=\color{blue} Y =Y=
Z=Z =Z=