Given the function f:R2→Rf: \mathbb R^2 \to \mathbb R f:R2→R with f(x,y)=−6x−7yf(x,y) = -6 x - 7 yf(x,y)=−6x−7y.
f:R2→Rf: \mathbb R^2 \to \mathbb R f:R2→R
f(x,y)=−6x−7yf(x,y) = -6 x - 7 yf(x,y)=−6x−7y
Compute ∫∫Df(x,y)dA\displaystyle \int \int_{{\color{orange}D}} f(x,y) dA∫∫Df(x,y)dA over the given triangle D\color{orange}DD.
∫∫Df(x,y)dA\displaystyle \int \int_{{\color{orange}D}} f(x,y) dA∫∫Df(x,y)dA
D\color{orange}DD
∫∫Df(x,y)dA=\displaystyle \int \int_{{\color{orange}D}} f(x,y) dA = ∫∫Df(x,y)dA=