en
utf-8
math math-format
Double Integral: Finding Parameter for given Value
int2-04-01
multiple
10192
randRangeExclude(-8,8,[0,1,-1]) randRangeExclude(-8,8,[0,1,A,-1]) randRange(1,8) randRangeExclude(1,8,[X]) randRangeExclude(-8,8,[0]) X*Y*K*A

Consider the function f: \mathbb R^2 \to \mathbb R with f(x,y) = A {\color{red}K} + B y and a constant \color{red}K.

Which value of \color{red}K ensures \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA = I where \color{orange}D is the triangle below?



graphInit({ range: [[-2, 9],[-9, 9]], scale: [20,20], tickStep: [1,1], gridStep: [1,1], labelStep: [2,2], gridOpacity: 0.1, axisOpacity: 0.8, tickOpacity: 0.6, labelOpacity: 0.8 }); label( [ 0, 9.5 ], "y", "above" ); label( [9.5,0 ], "x", "right" ); line( [0, -Y], [0, Y], { stroke: ORANGE } ); line( [0,-Y], [X, 0], { stroke: ORANGE } ); line( [X,0], [0, Y], { stroke: ORANGE } )


a {\color{red}K} = K

By definition

\displaystyle \int \int_{{\color{orange}D}} f(x,y) \, dA = \int \int_{{\color{orange}D}} (A {\color{red}K} + B y) \, dA = \int \int_{{\color{orange}D}} A {\color{red}K} \, dA + \int \int_{{\color{orange}D}} B y \, dA.

The 1st summand \displaystyle \int \int_{{\color{orange}D}} A {\color{red}K} \, dA = A {\color{red}K} \int \int_{{\color{orange}D}} 1 \, dA can be determined geometrically,

since \displaystyle \int \int_{{\color{orange}D}} 1 \, dA = area of the triangle {\color{orange}D} = X \cdot Y = Y*X.

Combined the integral has the value \displaystyle \int \int_{{\color{orange}D}} A {\color{red}K} \, dA = A*X*Y {\color{red}K}.

We contemplate (geometrically), that the 2nd summand \displaystyle \int \int_{{\color{orange}D}} B y \, dA must vanish.

It holds \displaystyle \int \int_{{\color{orange}D}} B y \, dA = B \int_{0}^{X} \int_{fractionReduce(Y,X,small=true) x - Y}^{-fractionReduce(Y,X,small=true) x +Y} y \, dy dx.

For the interval boundaries of the inner integration one sees fractionReduce(Y,X) x - Y = - \left(-fractionReduce(Y,X) x +Y\right), i.e. one of the boundary is the negative of the other one.

Due to symmetry of the odd function y \mapsto y it follows \displaystyle \int_{fractionReduce(Y,X,small=true) x - Y}^{-fractionReduce(Y,X,small=true) x +Y} y \, dy =0.

Eventually \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA = I = A*X*Y {\color{red}K} and {\color{red}K} = K.