de-CH
utf-8
math math-format
Finding Parameter for given Value, by computing
int2-04-02
multiple
10192
randRangeExclude(-8,8,[0,1,-1]) randRangeExclude(-8,8,[0,1,A,-1]) randRange(1,8) randRangeExclude(1,8,[X]) randRangeExclude(-8,8,[0]) fractionReduce(-2*Y*X*X-6*Y*X*X+3*X*Y*K*A,3)

Consider a function f: \mathbb R^2 \to \mathbb R with f(x,y) = A {\color{red}K} + B x and a constant \color{red}K.

Which \color{red}K ensures that \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA = I with the given triangel \color{orange}D below.



graphInit({ range: [[-2, 9],[-9, 9]], scale: [20,20], tickStep: [1,1], gridStep: [1,1], labelStep: [2,2], gridOpacity: 0.1, axisOpacity: 0.8, tickOpacity: 0.6, labelOpacity: 0.8 }); label( [ 0, 9.5 ], "y", "above" ); label( [9.5,0 ], "x", "right" ); line( [0, -Y], [0, Y], { stroke: ORANGE } ); line( [0,-Y], [X, 0], { stroke: ORANGE } ); line( [X,0], [0, Y], { stroke: ORANGE } )


a {\color{red}K} = K

By definition

\displaystyle \int \int_{{\color{orange}D}} f(x,y) \, dA = \int \int_{{\color{orange}D}} (A {\color{red}K} + B x) \, dA = \int \int_{{\color{orange}D}} A {\color{red}K} \, dA + \int \int_{{\color{orange}D}} B x \, dA.

The 1st summand \displaystyle \int \int_{{\color{orange}D}} A {\color{red}K} \, dA = A {\color{red}K} \int \int_{{\color{orange}D}} 1 \, dA can be computed geometrically,

since\displaystyle \int \int_{{\color{orange}D}} 1 \, dA = area of the triangle {\color{orange}D} = X \cdot Y = Y*X.

Using this give the value of this integral \displaystyle \int \int_{{\color{orange}D}} A {\color{red}K} \, dA = A*X*Y {\color{red}K}.

For the 2nd integration compute \displaystyle \int \int_{{\color{orange}D}} B x \, dA = B \int_{0}^{X} \int_{fractionReduce(Y,X,small=true) x - Y}^{-fractionReduce(Y,X,small=true) x +Y} x \, dy dx.

The interval boundaries of the inner integration satisfy fractionReduce(Y,X) x - Y = - \left(-fractionReduce(Y,X) x +Y\right), i.e. one the of the boundaries is the negative of the other.

Due to the symmetry of the even function y \mapsto x one gets \displaystyle \int_{fractionReduce(Y,X,small=true) x - Y}^{-fractionReduce(Y,X,small=true) x +Y} x \, dy = 2 \int_{0}^{-fractionReduce(Y,X,small=true) x +Y} x \, dy = 2 x \left( -fractionReduce(Y,X,small=true) x +Y \right) = -fractionReduce(2*Y,X) x^2 +2*Yx.

The 2nd integration is \displaystyle \int_{0}^{X} -fractionReduce(2*Y,X) x^2 +2*Yx \, dx and hence -fractionReduce(2*Y*X*X+6*Y*X*X,3).

Combined we have \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA = I = A*X*Y {\color{red}K} + fractionReduce(-2*Y*X*X-6*Y*X*X,3) and {\color{red}K} = K.