Let {\color{blue}z} = X + Yi and {\color{green}w} = A + {\color{red}B} \cdot i
be two complex numbers.
Determine {\color{red}B}, such that z \cdot w lies in the region D (piece of an annulus).
The vertical grey line shows all values that {\color{green}w} can take for different values of {\color{red}B}.
A strategy is to estimate how large the argument of {\color{green}w} must be to rotate {\color{blue}z} in the direction of D.
Then, we can choose an appropriate scaling by fixing the absolute value {\color{green}|w|}.
Alternatively, we consider the set of all complex numbers of the form {\color{blue}z} \cdot (A + {\color{red}B} \cdot i).
This is a line in the complex plane.
Now we choose a point in D
and find the parameter {\color{red}B}, such that the point lies on the line.
A description of the line with the given numbers is
\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} A*X \\ A*Y \end{pmatrix}
+ {\color{red}B} \begin{pmatrix} -Y \\ X \end{pmatrix} .
Substitute the coordinates of the point on the left-hand side and find {\color{red}B} as
\begin{pmatrix}re0 \\ im0 \end{pmatrix} = \begin{pmatrix} A*X \\ A*Y \end{pmatrix}
+ {\color{red}B} \begin{pmatrix} -Y \\ X \end{pmatrix} .
Our solution is {\color{red}B} = B, so
{\color{green}w} = A {\color{red} + B} \cdot i.