Determine the matrix exponential eA=(E11E12E21E22)\color{red} e^{\color{blue}A} = \begin{pmatrix} E_{11} & E_{12}\\ E_{21} & E_{22} \end{pmatrix} eA=(E11E21E12E22) of (5105)\color{blue} \begin{pmatrix} 5 & 1\\ 0 & 5 \end{pmatrix} (5015).
eA=(E11E12E21E22)\color{red} e^{\color{blue}A} = \begin{pmatrix} E_{11} & E_{12}\\ E_{21} & E_{22} \end{pmatrix} eA=(E11E21E12E22)
(5105)\color{blue} \begin{pmatrix} 5 & 1\\ 0 & 5 \end{pmatrix} (5015)
E11=\color{red} E_{11} =E11=
E12=\color{red} E_{12} =E12=
E21=\color{red} E_{21} =E21=
E22=\color{red} E_{22} =E22=