Let (V,⟨⋅,⋅⟩)(V, \langle \cdot, \cdot \rangle)(V,⟨⋅,⋅⟩) an Euclidean vector space and v,u∈Vv, u \in Vv,u∈V with ⟨v,u⟩=−4{\color{blue}\langle v,u \rangle = -4}⟨v,u⟩=−4.
(V,⟨⋅,⋅⟩)(V, \langle \cdot, \cdot \rangle)(V,⟨⋅,⋅⟩)
v,u∈Vv, u \in Vv,u∈V
⟨v,u⟩=−4{\color{blue}\langle v,u \rangle = -4}⟨v,u⟩=−4
Determine the value of the scalar product ⟨−8v,−6u⟩\langle -8v, -6u \rangle⟨−8v,−6u⟩.
⟨−8v,−6u⟩\langle -8v, -6u \rangle⟨−8v,−6u⟩
⟨−8v,−6u⟩=\langle -8v, -6u \rangle =⟨−8v,−6u⟩=