Let φ=q⋅π{\color{orange}\varphi} = \color{red}q \cdot \piφ=q⋅π an angle with −12π<φ<0\displaystyle -\frac{1}{2}\pi < {\color{orange}\varphi} < 0−21π<φ<0 and f\color{blue}ff the function with f(x)=sin(14x−φ)\displaystyle {\color{blue}f(x) = \sin \left(\frac{1}4 x-{\color{orange}\varphi}\right)} f(x)=sin(41x−φ).
φ=q⋅π{\color{orange}\varphi} = \color{red}q \cdot \piφ=q⋅π
−12π<φ<0\displaystyle -\frac{1}{2}\pi < {\color{orange}\varphi} < 0−21π<φ<0
f\color{blue}ff
f(x)=sin(14x−φ)\displaystyle {\color{blue}f(x) = \sin \left(\frac{1}4 x-{\color{orange}\varphi}\right)} f(x)=sin(41x−φ)
Determine q\color{red}qq such that f(π)=1\displaystyle {\color{blue}f\left(\pi\right) = 1} f(π)=1.
q\color{red}qq
f(π)=1\displaystyle {\color{blue}f\left(\pi\right) = 1} f(π)=1