de-CH
utf-8
math math-format
Application Green's Formula
va-04-02
multiple
131040
randRangeExclude(-8,8,[-1,0,1]) randRangeExclude(-8,8,[-1,0,1,A]) randRangeExclude(2,6,[3,5]) randRange(2,6) negParens(B-A) randRangeExclude(-8,8,[0]) randRangeExclude(-8,8,[0,X]) abs(X)*abs(Y) I*(B-A) abs(X)/X abs(Y)/Y

Consider the vector field K: \mathbb R^2 \to \mathbb R^2 with K(x,y) =\begin{pmatrix} A y + e^{\sin(x)} \\ Bx + \sqrt{y^{C} + D} \end{pmatrix} and the rectangle below with boundary curve \gamma = \partial R.

Compute \displaystyle \oint_\gamma K d\gamma.



graphInit({ range: [[-9, 9],[-9, 9]], scale: [20,20], tickStep: [1,1], gridStep: [1,1], labelStep: [2,2], gridOpacity: 0.1, axisOpacity: 0.8, tickOpacity: 0.6, labelOpacity: 0.8 }); label( [ 0, 9.5 ], "y", "above" ); label( [9.5,0 ], "x", "right" ); line( [0, 0], [X/2, 0], { stroke: ORANGE, arrows: "->" } ); line( [X/2, 0], [X, 0], { stroke: ORANGE } ); line( [X,0], [X, Y], { stroke: ORANGE } ); line( [X, Y], [0, Y], { stroke: ORANGE } ); line( [0,Y], [0, 0], { stroke: ORANGE } );
a \displaystyle \oint_\gamma K d\gamma= S
a \displaystyle \oint_\gamma K d\gamma= -S

If a vector field looks so complicated as K(x,y) =\begin{pmatrix} Ay + e^{\sin(x)} \\ Bx + \sqrt{y^{C} + D} \end{pmatrix} = \begin{pmatrix} P(x,y) \\ Q(x,y) \end{pmatrix} it might be a good idea to apply Green's formula.

This states for a curve with positive orientation that \displaystyle \oint_{\gamma = \partial R} K d\gamma = \iint_R (Q_x - P_y)(x,y) dA.

Hier, the orientation of the boundary curve \gamma is positive.

Hier, the orientation of the boundary curve \gamma is negative.

Flipping the orientation gives a positive one for the curve \overline{\gamma}.

Therefore \displaystyle \oint_\gamma K d\gamma = - \oint_{\overline{\gamma}} K d\gamma = - \iint_R (Q_x - P_y)(x,y) dA.

The actual solution is the negative of \displaystyle \iint_R (Q_x - P_y)(x,y) dA.

We have Q(x,y)_x=(Bx + \sqrt{y^{C} + D} )_x = B and P(x,y)_y=(A x + e^{\sin(x)})_x = A.

With substitution is becomes \displaystyle \iint_R (Q_x - P_y)(x,y) dA = \iint_R F \ dA.

The integral simplifies to \displaystyle \iint_R FdA = F\iint_R 1 dA = F \cdot area of R.

Using the area of the rectangle = I we get \displaystyle \oint_\gamma K d\gamma = S.

Using the area of the rectangle = I we get with the correct orientation \displaystyle \oint_\gamma K d\gamma = - \oint_{\overline{\gamma}} K d\gamma = -S.