Consider the vector field K: \mathbb R^2 \to \mathbb R^2
with
K(x,y) =\begin{pmatrix} A y + e^{\sin(x)} \\
Bx + \sqrt{y^{C} + D} \end{pmatrix}
and the rectangle below with boundary curve \gamma = \partial R
.
Compute
\displaystyle \oint_\gamma K d\gamma
.
\displaystyle \oint_\gamma K d\gamma=
S
\displaystyle \oint_\gamma K d\gamma=
-S
If a vector field looks so complicated as K(x,y) =\begin{pmatrix} Ay + e^{\sin(x)} \\
Bx + \sqrt{y^{C} + D} \end{pmatrix} =
\begin{pmatrix} P(x,y) \\ Q(x,y) \end{pmatrix}
it might be a good idea to apply Green's formula.
This states for a curve with positive orientation that \displaystyle \oint_{\gamma = \partial R} K d\gamma = \iint_R (Q_x - P_y)(x,y) dA
.
Hier, the orientation of the boundary curve \gamma
is positive.
Hier, the orientation of the boundary curve \gamma
is negative.
Flipping the orientation gives a positive one for the curve \overline{\gamma}
.
Therefore \displaystyle \oint_\gamma K d\gamma = - \oint_{\overline{\gamma}} K d\gamma = - \iint_R (Q_x - P_y)(x,y) dA
.
The actual solution is the negative of \displaystyle \iint_R (Q_x - P_y)(x,y) dA
.
We have Q(x,y)_x=(Bx + \sqrt{y^{C} + D} )_x = B
and
P(x,y)_y=(A x + e^{\sin(x)})_x = A.
With substitution is becomes \displaystyle \iint_R (Q_x - P_y)(x,y) dA = \iint_R F \ dA
.
The integral simplifies to
\displaystyle \iint_R FdA = F\iint_R 1 dA = F \cdot
area of R
.
= I
we get
\displaystyle \oint_\gamma K d\gamma = S
.
Using the area of the rectangle = I
we get with the correct orientation
\displaystyle \oint_\gamma K d\gamma = - \oint_{\overline{\gamma}} K d\gamma = -S
.