de-CH
utf-8
math math-format
Gebietsintegral über Dreieck
int2-01-02
multiple
10192
randRangeExclude(-8,8,[0,1,-1]) randRangeExclude(-8,8,[0,1,A,-1]) randRange(1,8) randRangeExclude(1,8,[X]) randRange(1,Y-2)

Gegeben sei die Funktion f: \mathbb R^2 \to \mathbb R mit f(x,y) = A x + B y.

Berechnen Sie das Integral \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA über dem Gebiet \color{orange}D.



graphInit({ range: [[-9, 9],[-2, 9]], scale: [20,20], tickStep: [1,1], gridStep: [1,1], labelStep: [2,2], gridOpacity: 0.1, axisOpacity: 0.8, tickOpacity: 0.6, labelOpacity: 0.8 }); label( [ 0, 9.5 ], "y", "above" ); label( [9.5,0 ], "x", "right" ); line( [-X, D], [X, D], { stroke: ORANGE } ); line( [-X,D], [0, Y], { stroke: ORANGE } ); line( [0,Y], [X, D], { stroke: ORANGE } )


a \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA = B*Y*Y*X/3 -B*X*Y*Y + X*B*Y*Y

Es ist \displaystyle \int\int_{\orange{D}} f(x,y) dA = \int_{-X}^{X} \int_{D}^{f_O(x)} (Ax + By) \; dy \; dx mit f_O(x) = - fractionReduce(Y-D,X) |x| + Y.

Für die innere Integration zerlegen wir das Integral in x \geq 0 und x < 0:

\displaystyle \int_{-X}^{X} \int_{D}^{f_O(x)} (Ax + By) \; dy \; dx = \int_{-X}^{0} \int_{D}^{fractionReduce(Y-D,X,small=true) x + Y} (Ax + By) \; dy \; dx + \int_0^{X} \int_{D}^{-fractionReduce(Y-D,X,small=true) x + Y} (Ax + By) \; dy \; dx

und verwenden \displaystyle \int (Ax + By) \; dy = Axy + fractionReduce(B,2)y^2 +C.

Damit erhalten wir für die äussere Integration:

\displaystyle \int_{-X}^{0} fractionReduce(2*A*X*Y+B*Y*Y,2*X*X) x^2 + fractionReduce(A*Y*X+B*Y*Y-A*D*X,X) x + fractionReduce(B*Y*Y-B*D*D,2) \; dx + \int_0^{X} fractionReduce(-2*A*X*Y+B*Y*Y,2*X*X) x^2 + fractionReduce(A*Y*X-B*Y*Y-A*D*X,X) x + fractionReduce(B*Y*Y-B*D*D,2) \; dx = fractionReduce((2*A*Y*X+B*Y*Y)*X -3*X*B*Y*Y- 3*X*A*X*Y + 3*X*B*Y*Y-3*X*X*D*A+3*B*D*D*X,6) + fractionReduce(-2*A*Y*X*X+ B*Y*Y*X -3*X*B*Y*Y+3*A*X*X*Y + 3*X*B*Y*Y+3*X*X*D*A+3*B*D*D*X,6) = fractionReduce(2*B*Y*Y*X -6*B*X*Y*Y + 6*X*B*Y*Y + 6*B*D*D*X ,6).