Gegeben sei das Rechteck D⊂R2\color{orange}D \subset \mathbb R^2D⊂R2.
D⊂R2\color{orange}D \subset \mathbb R^2D⊂R2
D=D1∪D2∪D3{\orange{D}} = {\red{D_1}} \cup {\red{D_2}} \cup {\red{D_3}} D=D1∪D2∪D3
D1={(x,y) ∣ −7≤x≤1, −2x−16≤y≤12x+32} {\red{D_1}} = \left\{ (x,y) \, | \, -7 \leq x \leq 1, \; -2 x - 16 \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D1={(x,y)∣−7≤x≤1,−2x−16≤y≤21x+23} und
D1={(x,y) ∣ −7≤x≤1, −2x−16≤y≤12x+32} {\red{D_1}} = \left\{ (x,y) \, | \, -7 \leq x \leq 1, \; -2 x - 16 \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D1={(x,y)∣−7≤x≤1,−2x−16≤y≤21x+23}
D2={(x,y) ∣ −3≤x≤5, 12x−16≤y≤12x+32} {\red{D_2}} = \left\{ (x,y) \, | \, -3 \leq x \leq 5, \; \frac{1}{2} x - 16 \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D2={(x,y)∣−3≤x≤5,21x−16≤y≤21x+23} und
D2={(x,y) ∣ −3≤x≤5, 12x−16≤y≤12x+32} {\red{D_2}} = \left\{ (x,y) \, | \, -3 \leq x \leq 5, \; \frac{1}{2} x - 16 \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D2={(x,y)∣−3≤x≤5,21x−16≤y≤21x+23}
D3={(x,y) ∣ −7≤x≤5, 12x−172≤y≤12x+4}. {\red{D_3}} = \left\{ (x,y) \, | \, -7 \leq x \leq 5, \; \frac{1}{2} x - \frac{17}{2} \leq y \leq \frac{1}{2} x + 4\right\}.D3={(x,y)∣−7≤x≤5,21x−217≤y≤21x+4}.
D1={(x,y) ∣ −7≤x≤−3, −2x−16≤y≤−2x+4} {\red{D_1}} = \left\{ (x,y) \, | \, -7 \leq x \leq -3, \; -2 x - 16 \leq y \leq -2 x + 4\right\}D1={(x,y)∣−7≤x≤−3,−2x−16≤y≤−2x+4} und
D1={(x,y) ∣ −7≤x≤−3, −2x−16≤y≤−2x+4} {\red{D_1}} = \left\{ (x,y) \, | \, -7 \leq x \leq -3, \; -2 x - 16 \leq y \leq -2 x + 4\right\}D1={(x,y)∣−7≤x≤−3,−2x−16≤y≤−2x+4}
D2={(x,y) ∣ −3≤x≤1, 12x+172≤y≤12x+32} {\red{D_2}} = \left\{ (x,y) \, | \, -3 \leq x \leq 1, \; \frac{1}{2} x + \frac{17}{2} \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D2={(x,y)∣−3≤x≤1,21x+217≤y≤21x+23} und
D2={(x,y) ∣ −3≤x≤1, 12x+172≤y≤12x+32} {\red{D_2}} = \left\{ (x,y) \, | \, -3 \leq x \leq 1, \; \frac{1}{2} x + \frac{17}{2} \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D2={(x,y)∣−3≤x≤1,21x+217≤y≤21x+23}
D3={(x,y) ∣ 1≤x≤5, −2x−16≤y≤12x+32}. {\red{D_3}} = \left\{ (x,y) \, | \, 1 \leq x \leq 5, \; -2 x - 16 \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}.D3={(x,y)∣1≤x≤5,−2x−16≤y≤21x+23}.
D1={(x,y) ∣ −7≤x≤−3, −2x−16≤y≤12x+32} {\red{D_1}} = \left\{ (x,y) \, | \, -7 \leq x \leq -3, \; -2 x - 16 \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D1={(x,y)∣−7≤x≤−3,−2x−16≤y≤21x+23} und
D1={(x,y) ∣ −7≤x≤−3, −2x−16≤y≤12x+32} {\red{D_1}} = \left\{ (x,y) \, | \, -7 \leq x \leq -3, \; -2 x - 16 \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D1={(x,y)∣−7≤x≤−3,−2x−16≤y≤21x+23}
D2={(x,y) ∣ −3≤x≤1, 12x−172≤y≤12x+32} {\red{D_2}} = \left\{ (x,y) \, | \, -3 \leq x \leq 1, \; \frac{1}{2} x - \frac{17}{2} \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D2={(x,y)∣−3≤x≤1,21x−217≤y≤21x+23} und
D2={(x,y) ∣ −3≤x≤1, 12x−172≤y≤12x+32} {\red{D_2}} = \left\{ (x,y) \, | \, -3 \leq x \leq 1, \; \frac{1}{2} x - \frac{17}{2} \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D2={(x,y)∣−3≤x≤1,21x−217≤y≤21x+23}
D3={(x,y) ∣ 1≤x≤5, 12x−172≤y≤−2x+4}. {\red{D_3}} = \left\{ (x,y) \, | \, 1 \leq x \leq 5, \; \frac{1}{2} x - \frac{17}{2} \leq y \leq -2 x + 4\right\}.D3={(x,y)∣1≤x≤5,21x−217≤y≤−2x+4}.
D1={(x,y) ∣ −7≤x≤−3, −2x+16≤y≤12x+32} {\red{D_1}} = \left\{ (x,y) \, | \, -7 \leq x \leq -3, \; -2 x + 16 \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D1={(x,y)∣−7≤x≤−3,−2x+16≤y≤21x+23} und
D1={(x,y) ∣ −7≤x≤−3, −2x+16≤y≤12x+32} {\red{D_1}} = \left\{ (x,y) \, | \, -7 \leq x \leq -3, \; -2 x + 16 \leq y \leq \frac{1}{2} x + \frac{3}{2}\right\}D1={(x,y)∣−7≤x≤−3,−2x+16≤y≤21x+23}
D2={(x,y) ∣ −3≤x≤1, 12x−172≤y≤−2x+4} {\red{D_2}} = \left\{ (x,y) \, | \, -3 \leq x \leq 1, \; \frac{1}{2} x - \frac{17}{2} \leq y \leq -2 x + 4\right\}D2={(x,y)∣−3≤x≤1,21x−217≤y≤−2x+4} und
D2={(x,y) ∣ −3≤x≤1, 12x−172≤y≤−2x+4} {\red{D_2}} = \left\{ (x,y) \, | \, -3 \leq x \leq 1, \; \frac{1}{2} x - \frac{17}{2} \leq y \leq -2 x + 4\right\}D2={(x,y)∣−3≤x≤1,21x−217≤y≤−2x+4}