What Khan-specific js functions exist?
Non-exhaustive overview of useful functions that can be used anywhere in JavaScript:
Random functions:
rand(n)
: Random integer >= 0 and < nrandRange(min,max)
: Random integer betweenmin
andmax
inclusiverandRangeExclude(min,max,excludes)
: LikerandRange
, but not the numbers inexcludes
randRangeNonZero(min,max)
: LikerandRange
, but not zerorandRangeUnique(min,max,n)
: LikerandRange
, butn
different numbersrandRangeUniqueNonZero(min,max,n)
: LikerandRangeUnique
but not zerorandFromArray(array)
: Random selection from arrayrandFromArrayExclude(array,excludes)
: LikerandFromArray
, but not the numbers inexcludes
getPrime()
: Random prime number between 2 and 97shuffle(array,n)
: Shuffle array and pulln
entries
Math functions
Return values are numbers or arrays of numbers:
digits(n)
: Digits of a non-negative integer as an array (low digits first)integerToDigits(n)
: Likedigits(n)
, but reverse orderdecimalDigits(x)
: Digits of a decimal number (low digits first)decimalPlaces(x)
: Number of decimal places after the decimaldigitsToInteger(digits)
: Creates whole numbers from digits (high digits first)roundTowardsZero(x)
: Rounds towards zeroroundToNearest(increment,x)
: Round to nearest multiple ofincrement
roundTo(n,x)
: Round ton
digitsfloorTo(n,x)
: Same asroundTo
, but with rounding downceilTo(n,x)
: Same asroundTo
, but with rounding upfactorial(n)
: FactorialSplitRadical(n)
: Factors out as much as possible from a square root, prefactor and radicand are returned as an arraysplitCube(n)
: LikesplitRadical
, but with cubic rootgetGCD(a,b)
: Largest common divisorLCM(a,b)
: Least common multiplereduce(denominator,numerator)
: Returns the truncated fraction as an arraygetPrimeFactorization(n)
: Prime factorization as arraytoFraction(x,tolerance)
: Convert decimal number to array of numerator and denominator, given tolerancesortNumbers(array)
: Sort numbers
Test functions
Return values are bools:
isPrime(n)
: Test whethern
is primeisInt(x)
: Test whetherx
is an integerisOdd(n)
: Test whethern
is oddisEven(n)
: Test whethern
is even
Print functions
Return values are strings or arrays of strings:
negParens(x)
: Putx
in brackets if negativeroundToApprox(x,n)
: Round ton
digits exactly, convert to string and write\approx
in front of it, if roundedfractionReduce(denominator,numerator,small=false,parens=false)
: Fraction to LaTeX fraction; optional parameterssmall
andparens
determine whether the fraction should be written small or with brackets (if negative)fraction(denominator,numerator,defraction,reduce,small,parens)
: Fraction to LaTeX fraction;small
andparens
as above,reduce
controls whether to shorten,defraction
controls whether special cases such as n/0, n/1 and 0/d are output in a specially simplified formpolarForm(r,theta,eulerForm)
: Formats complex number in polar form (as exponential ifeulerForm
is true, otherwise with cis)complexNumber(re,im)
: Write complex numbercomplexFraction(re,reDenominator,im,imDenominator)
: Write complex fractionscientific(precision,x)
: Scientific notation