

Differentialrechnung

Ableitung als Funktion

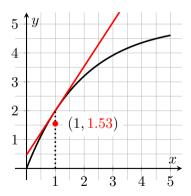
Simon Knellwolf

Repetition: Ableitung an einer Stelle

Es sei f eine Funktion mit Definitionsmenge D.

Die Ableitung von f in $x_0 \in D$ ist definiert als der Grenzwert

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$



Ableitungsfunktion

Existiert der Grenzwert $f'(x_0)$ für $x_0 \in D$, nennt man f differenzierbar in x_0 .

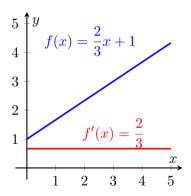
Ableitungsfunktion

Existiert der Grenzwert f'(x) für alle $x \in D$, nennt man f differenzierbar.

Die Zuordnung $x \mapsto f'(x)$ ist dann selbst eine Funktion mit Definitionsmenge D.

Man nennt f' die Ableitungsfunktion oder einfach die Ableitung von f.

Beispiel

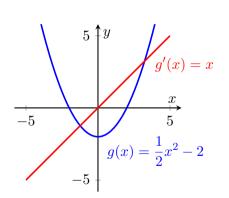


$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\frac{2}{3}x + 1 - \frac{2}{3}x_0 - 1}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\frac{2}{3}(x - x_0)}{x - x_0} = \frac{2}{3}$$

Beispiel



$$g'(x_0) = \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\frac{1}{2}x^2 - 2 - \frac{1}{2}x_0^2 + 2}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\frac{1}{2}(x^2 - x_0^2)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{\frac{1}{2}(x - x_0)(x + x_0)}{x - x_0}$$

$$= \lim_{x \to x_0} \frac{1}{2}(x + x_0)$$

$$= \frac{1}{2} \cdot \left(\lim_{x \to x_0} x + \lim_{x \to x_0} x_0\right) = x_0$$

Zusammenfassung

- Die Ableitung einer differenzierbaren Funktion f ist selbst eine Funktion. Man bezeichnet sie mit f'.
- Die Funktionsgleichung von f' lässt sich durch Berechnung des Differentialquotienten aus der Funktionsgleichung von f bestimmen.